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ABSTRACT
Every smooth homotopy 4-sphere is diffeomorphic to the 4-sphere.
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1. Introduction
For a positive integer n, the stable 4-sphere of genus n is the connected sum

Y, = S*#n(S? x §%) = S 1 S? x S?

of the 4-sphere S* and the n copies S? x S? (i = 1,2,...,n) of the 2-sphere product
S? x 82 done by taking n mutually disjoint 4-balls embedded smoothly in S*, where
a choice of the 4-balls is independent of the diffeomorphism type of >,,.

A compact connected oriented smooth 4-manifold is simply called a 4-manifold in
this paper. A compact punctured 4-manifold of a 4-manifold X is a 4-manifold X°
obtained from X by removing an interior of a 4-ball Dj embedded smoothly in the
interior of the 4-manifold X.

The following result is a main result of this paper.

Theorem 1.1. Let 3% be a compact punctured 4-manifold of the stable 4-sphere 3,
of every positive genus n. Then every smooth embedding e : 3% — ¥, extends to a
diffeomorphism e* : X,, — X,,.



A smooth homotopy 4-sphere is a smooth 4-manifold M homotopy equivalent to
S4. The following result is obtained from Theorem 1.1:

Corollary 1.2. Every smooth homotopy 4-sphere M is diffeomorphic to the 4-sphere
St

Proof of Corollary 1.2. It is known that there is a diffeomorphism
k: M#%, — X,

from the connected sum M#Y,, onto ¥, for a positive integer n (see Wall [9]). Let
D} =cl(£,\ X29) be a 4-ball. By regarding M#Y,, = M° UX0 let

e: X0 %,
be a smooth embedding which is extended to a diffeomorphism
et 2, =3,
by Theorem 1.1. By the identity
MO = dI(2,\ e(59)) = e*el(S, \ £2) = e* (D)),
there is an orientation preserving diffeomorphism
h:M"— D

defined by the inverse diffeomorphism (e™)™! of e™. By I'; = 0 in Cerf [2], the
diffeomorphism h extends to a diffeomorphism ht : M — S4. O

In the topological category, the corresponding result of Corollary 1.2 (namely,
every topological 4-manifold homotopy equivalent to the 4-sphere is homeomorphic
to the 4-sphere) is well-known by Freedman [3] (see also [4]). In the piecewise-linear
category, the corresponding result of Corollary 1.2 (namely, every piecewise-linear
4-manifold homotopy equivalent to the piecewise-linear 4-sphere is piecewise-linearly
homeomorphic to the piecewise-linear 4-sphere) can be shown by using the piecewise-
linear versions of the techniques used in this paper (see Hudson [6], Rourke-Sanderson
[3])-

It is known by Wall in [9] that for every closed smooth signature-zero spin 4-
manifold M with second Betti number S5(M;Z) = 2m > 0, there is a diffeomorphism

Kt M#S, = Soin
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for a positive integer n and by Freedman [3] (see also [4]) that there is a homeomor-
phism from M to ¥,,. However, a technique used for the proof of Theorem 1.1 cannot
be directly generalized to this case. In fact, it is known by Akhmedov-Park in [1] that
there is a smooth closed signature-zero spin 4-manifold M with a large second Betti
number Fy(M;Z) = 2m such that M is not diffeomorphic to ¥,,. What can be said
in this paper is the following corollary.

Corollary 1.3. Let M and M’ be closed connected smooth 4-manifolds with the
same second Betti number fo(M;Z) = 5o(M';Z). Then there is a smooth embedding
e: M° — M’ extending a diffeomorphism et : M — M’ if and only if the embedding
e: M° — M’ induces a fundamental group isomorphism

fu:m(M° x) — o (M, f(x)).

For this corollary, the proof of the “if”part is obtained by noting that the closed
complement D} = cl(M’\e(M?)) is a smooth homotopy 4-ball with 3-sphere boundary
which is confirmed by the van Kampen theorem and an homological argument. By
Corollary 1.2. the smooth homotopy 4-ball DS‘ is diffeomorphic to the 4-ball. Thus,
by I'y = 0 in [2], the map e extends to a diffeomorphism e* : M — M’. The proof of
the “only if” part is obvious.

2. Proof of Theorem 1.1

A surface-knot in a 4-manifold X is a closed oriented surface ' embedded in the
interior of X by a smooth embedding. It is also called a 2-knot if F' is the 2-sphere
S2. Two surface-knots ' and F” in X are equivalent by an equivalence f if F is sent
to F' orientation-preservingly by an orientation-preserving diffeomorphism f of X.

A trivial surface-knot is a surface-knot F' which is the boundary of a handlebody
smoothly embedded into a 4-ball in the interior of X, where a handlebody means a
3-manifold which is a 3-ball, a solid torus or a boundary-disk sum of some number of
solid tori. A trivial genus n surface-knot in X for every n > 0 exists uniquely up to
equivalences of X (see [5]).

Let

F = S*#nT =F = S*#" T,

be a trivial genus n surface-knot in S* which is the connected sum of a trivial 2-knot
(5%,5?) and the n copies (S*,T;) (i = 1,2,...,n) of a trivial torus-knot (S*, T') done
by taking mutually disjoint n disks in S?. The following lemma is a standard result.



Lemma 2.1 The double branched covering space S*(F), of S* branched along a
trivial genus n surface-knot F' is diffeomorphic to the stable 4-sphere 3, of genus n.

Proof of Lemma 2.1. The double branched covering covering space S4(5?)y of S*
branched along a trivial 2-knot S? is easily seen to be diffeomorphic to the 4-sphere
Yo = S*

Let T be a trivial torus-knot in S*. Then the pair (S* T is the double of the
product pair (A,0) x I = (A x I,0 x I) for a trivial loop o in a 3-ball A and the
interval I = [0, 1], namely, (5%, T) is diffeomorphic to the boundary pair

A((A, 0) x I?) = (A(A x I?),0(0 x I?)),

where I™ denotes the m-fold product of I for any m > 1. Thus, the double branched
covering space S4(T)y of S* branched along T is diffeomorphic to the boundary
O(A(0)y x I?), where A(0), is the double branched covering space over A branched
along o which is diffeomorphic to the product S? x I. This means that the 5-manifold
A(0)y x I?* is the product S? x I®. Hence the 4-manifold S*(T"), is diffeomorphic to
S% x S2. For n > 2, a trivial genus n surface-knot (5%, F},) is equivalent to the n-fold
connected sum of a trivial torus-knot (S, 7) and hence the double branched covering
space S*(F),), of S* branched along F), is diffeomorphic to the n-fold connected sum
of SY(T)y = 5% x S%. Hence S*(F,), is diffeomorphic to the stable 4-sphere %, of
genus n. [J

A loop basis of a closed surface F' of genus n is a system of oriented simple loop
pairs (ej,e;) (j = 0,1,2,...,n) on F representing a basis for H;(F;Z) such that
ejNey = e;Nely = e;Nel =0 for all distinct j,j" and e; N € is one point with
the intersection number Int(ej,€’) = +1 in F' for all j. A simple loop ¢ in a surface-
knot F'is spin if the Zy-quadratic function q : Hy(F';Zs) — Zo associated with the
surface-knot F" has ¢([¢]) = 0 for the Zy-homology class [(] € H,(F';Zs) of ¢.

A 2-handle on a surface-knot F'in X is a 2-handle D x I on F' embedded smoothly
in the interior of X such that (D x I) N F' = (0D) x I, where I denotes a closed
interval with 0 as the center and D x 0 is called the core of the 2-handle D x I and
identified with D. An orthogonal 2-handle pair or simply, an O2-handle pair on a

surface-knot in X is a pair (D x I, D’ x I) of 2-handles D x I, D' x I on F such that
(D x )N (D' x I) = (D) x I N (dD') x I

and (0D) x I and (0D’) x I meet orthogonally on F, that is, 0D and 9D’ meet
transversely at one point p and the intersection (0D) x I N (9D') x I is diffeomorphic
to the square @ = p x I x I (see [7]).



An O2-handle basis of a trivial genus n surface-knot F is the system (D, x I, D), xI)
of mutually disjoint O2-handle pairs (D; x I, D} x I) (i =1,2,...,n) on F such that
the loop system (0D, dD.) of (0D;,0D;) (i = 1,2,...,n) forms a spin loop basis of
F.

Lemma 2.2. Let (D, x I, D), x I) be an O2-handle basis of a trivial genus n surface-
knot F in S*. Then the surface-knot F bounds a genus n handlebody V (F'; D., x I)
smoothly embedded into a 3-ball B(V(F; D, x I), D, x I) smoothly embedded in S*
such that

(IntD}) x I C ItV (F; D, x I) and (IntD;) x INIntV(F; D, x I) =)
foralli(i=1,2,...,n) and

B(V(F;D. x I),D, xI) =V (F;D. x I)U", D; x I.

Proof of Lemma 2.2. Let S be the 2-sphere obtained from F' by the embedded
surgery along the 2-handles D x I (i = 1,2,...,n). By uniqueness of an O2-handle
pair in [7, Theorem 3.1], the 2-sphere S is a trivial 2-knot in S* and hence bounds a
3-ball V; in S*. The union V, U, D} x I, denoted by V(F; D, x I) is a handlebody
such that the union V(F; D, x I) U, D; x I, denoted by B(V(F; D, x I),D, x I)
is a 3-ball smoothly embedded in S*. [J

In Lemma 2.2, the 3-ball B; = D; x I U D, x I is called the bump associated with
the O2-handle pair (D; x I, D} x I), and the 3-ball B(V (F; D, x I), D, x I) embedded
smoothly in S* is called the total bump of a trivial surface-knot F associated with the
O2-handle basis (D, x I, D, x I).

A 2-sphere basis of the stable 4-manifold ¥, is a system of mutually disjoint
smooth unoriented 2-sphere pairs (S;,5)) (i = 1,2,...,n) in ¥, with S; NS = p; a
point such that the closed complement cl(3,, \ N(S,, S.)) is an compact n-punctured
4-sphere embedded smoothly in ¥, for a regular neighborhood N (S, S%) of the union
U ,S; US!in X,. In this case, note that S; and S, meet transversely in 3, with
intersection number +1.

The following lemma gives a relationship between an O2-handle basis (D, x I, D/, x
I) of a trivial surface-knot F' and a 2-sphere basis (S(D,), S(D.)) of the stable 4-
sphere S4(F)y = X,.

Lemma 2.3. The core system (D;,D}) (i = 1,2,...,n) of every O2-handle basis
(D; x I, DL x I) (i = 1,2,...,n) of a trivial genus n surface-knot F in S* lifts to a
2-sphere basis (S(D;),S(D})) (i = 1,2,...,n) of the stable 4-sphere S*(F), = %, of
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genus n by the double branched covering projection p : S*(F); — S* branched along
F.

Proof of Lemma 2.3. Let (D; x I, D;x 1) (i =1,2,...,n) be a standard O2-handle
basis of a trivial genus n surface-knot F in S*. Let N; (i = 1,2,...,n) be mutually
disjoint regular neighborhoods of the 3-balls D; x I U D, x I (i = 1,2,...,n) in the
4-sphere S*. Since N; is a 4-ball, the closed complement X = cl(S*\ UL, ;) is a
compact n-punctured 4-sphere and Fx = F'N X is a compact proper n-punctured 2-
sphere such that the pair (X, Fx) is smoothly embeddable in a trivial 2-knot (5%, 5?).
Using that the double branched covering space S*(S?), of the 4-sphere S* branched
along the 2-sphere S? is diffeomorphic to the 4-sphere S*, we see that the double
branched covering space X (Fx)s of X branched along the compact n-punctured 2-
sphere Fy is diffeomorphic to a compact n-punctured 4-sphere. This means that a
2-sphere pair system (S(D;), S(D})) (i = 1,2,...,n) is a 2-sphere basis of the stable
4-sphere S*(F)y = X, of genus n because the double branched covering space X (F o
is diffeomorphic to the closed complement cl(3, \ N(S(D.),S(D,)) by Lemma 2.1.
Let (E; x I,E! x I)(i = 1,2,...,n) be any O2-handle basis of a trivial genus n
surface-knot F' in S*. By uniqueness of an O2-handle pair in [7, Theorem 3.1], there
is an orientartion-preserving diffeomorphism ¢ of S* such that

g(F)=F, (gE)xIgE)xI)=(D;xI,D,xI)(i=12...n).

The diffeomorphism g lifts to an a-invariant orientation-preserving diffeomorphism f
of S4(F), sending the 2-sphere pair (S(E;), S(E!)) to the 2-sphere pair (S(D;), S(D?))
for all 4. Thus, the 2-sphere pair system (S(E;),S(E!)) (i =1,2,...,n) is a 2-sphere
basis of ¥, = S4(F),. O

Let A be a smooth bounded 3-submanifold of S*. The sutured triple associated
with the pair (5%, A) is a triplet (Y; A, A_) such that Y is a smooth compact 4-
manifold obtained from S* by splitting along the interior IntA of A and the boundary
dY of Y is given by the union A, U A_ for the splitting copies A, and A_ of A where
A, is a copy of A with orientation preserved and A_ is a copy of A with orientation
reversed. Note that there is a canonical identification map A, — A_. For a slightly
different explanation of the sutured triple (Y; A, A_), consider a bi-collar of A in S*
which is meant by the image c(A x [—1, 1]) of a smooth embedding ¢ : Ax[—1,1] — S4
with ¢(z,0) = z for all x € A. Then the sutured triple (Y; A, A_) is understood to
the triplet

(cl(S*\ ¢(A x [~1,1]),c(A x TU (0A) x [0,1]),e(A x (—=1) U (9A) x [~1,0]).
Let F be a trivial genus n surface-knot in S, and (D, x I, D, x I) an O2-handle
basis of F' in S*. For the genus n handlebody V = V(F;D. x I) constructed in
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Lemma 2.2, let
B=B(V(F;D, x1I),D,xI)=V UL, D; xI

be a total bump of F associated with an O2-handle basis (D, x I, D x I). Let

(W;V,,V_) be the sutured triple associated with (S*, V). Note that the 2-handle

system D; x [ (i =1,2,...,n)isin W. Let D; x I*(i = 1,2,...,n) be a 2-handle

system attached to V in W thickening the 2-handle system D; x [ (i =1,2,...,n).
We have the following lemma.

Lemma 2.4. The 4-manifold U = cl(W\ U, D; X I?) is a 4-ball smoothly embedded
in W.

Proof of Lemma 2.4. Since the bi-collar ¢(V x [—1,1]) is diffeomorphic to the
disk sum of n copies of the product S* x D3 for the 3-ball D3 and the union ¢(V x
[—1,1))U, D; x I* forms a 4-ball, the 4-manifold U is diffeomorphic to the 4-manifold
obtained from S* by removing the interior of a 4-ball, which is a 4-ball. [

The double branched covering space S*(F), is constructed from the sutured triple
(W, V., V_) of (S*, V) and the copy (W, V .,V _) of (W, V,,V_) by identifying V, with
V_ and V_ with V. by the canonical identification maps V, — V_ and V_ — V.,
respectively.

A spine of the stable 4-sphere Y, of genus n is the preimage Y = p~!(B) of the
total bump B = B(V(F; D, x I), D, x I) for an O2-handle basis (D, x I, D, x I) of F’
and the double branched covering projection p : S*(F)y — S branched along a trivial
genus n surface-knot F under the identification S*(F'); = %, given by Lemma 2.1. In
this case, the preimage Z = p~ (V) of V.= V(F; D, x I) is called the backbone of the

spine Y. The backbone Z of a spine Y of ¥, is diffeomorphic to the stable 3-sphere
S34n (St x S?) = SP# S x S?

of genus n. From the construction of S*(F)y from (W, V,,V_) and (W,V,,V_), it
is seen that the backbone Z splits ¥, into W and W. The spine Y is obtained from
Z by attaching 2-handle system D; x [ (i = 1,2,...,n) in W and the copy system
D; x I(i =1,2,...,n) in W. Then the following lemma is directly obtained from
Lemma 2.4.

Corollary 2.5. The closed complement cl(3, \ N(Y)) for a regular neighborhood
N(Y) of a spine Y in ¥, is a disjoint union of two smoothly embedded 4-balls in 33,,.

The following lemma is near the argument of [7].
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Lemma 2.6. Let I be a surface-knot in a 4-manifold X, and (Dx 1, D;xI) (i = 1,2))
O2-handle pairs on F in X such that (0D]) x I = (0D}) x I. Then there is a smooth
isotopy hy (t € [0, 1]) of X with hg = 1 such that hy(D x I, D} x I) = (D x I, D} x I)
and hy(F) = F.

Proof of Lemma 2.6. As it is done in [7, Lemma 2.3], let @ be an arc obtained from
D x I by shrinking D into a point such that a C dD;. Let a; = cl(0D} \ a) for each
i(i =1,2). Since 0D} = 0D),, we can assume that a| = a) and a boundary collar
of 9D} in D] coincides with a boundary collar of 0D} in D). Let F(D x I) denotes
the surface-knot obtained from F' by the surgery along the 2-handle D x I. For each
i(i=1,2), the arc a is deformed into an arc a! parallel to the arc a, along the disk
D} by a smooth isotopy hi(t € [0,1]) of X with hj = 1 keeking the surface-knot
F(D x I) fixed. Since a boundary collar of 0D} in D) coincides with a boundary
collar of 0D; in D), we may consider that the disk bounded by the loop @} U af in
the disk D) coincides with the disk bounded by the loop af U aj in the disk Dj. By
regarding D x [ as a thin 1-handle with the core a on the surface-knot F/(D x I), the
isotopies hi (t € [0,1]) for i = 1 and 2 constitute a desired isotopy hy (¢ € [0,1]) of X
with hg = 1 such that hy(D x I, D} x I) = (D x I, Dy x I) and hy(F) = F. O

Let X9 be a smooth 4-submanifold of ¥, obtained from ¥, by removing the
interiors of two 4-balls invariant under the covering involution « of S*(F)y = 3,,. Let
Diff " (D*, rel 0))be the orientation-preserving diffeomorphism group of the 4-ball D*
keeping the boundary dD* by the identity. The following lemma is an essential point
to the proof of Theorem 1.1.

Lemma 2.7. Every orientation-preserving smooth embedding u : %0 — 3, is
smoothly isotopic to a smooth embedding @ : %% — 3, such that the composition
o' = fu: X% — 3, for an a-invariant orientation-preserving diffeomorphism f of ¥,
is smoothly isotopic to the inclusion map
inc: Y90 — 3,

up to local replacements by diffeomorphisms in Diff " (D?, rel 9).

In the piecewise-linear category, this local replacement is not needed since every
orientation-preserving piecewise-linear homeomorphism of D? with the identity on

0D* is piecewise-linearly isotopic to the identity 1.

Proof of Lemma 2.7. Let Z = V Up V be the backbone of ¥, where V and
(D, x I, D), x I) are identified with the orbit handlebody V' and the orbit O2-handle

8



pair (D, xI, D’ xI)in S*, respectively, and V denotes the image (V) of V by . Also,
let Y = B Up B be the spine of ¥, where B is identifined with the orbit total bump
B in S* and B denotes the image a(B). The backbone Z and the spine Y of ¥,, are
assumed to be in X%°. Since the lifting surface-knot F is a trivial surface-knot in 3,,,
the embedding u is smoothly isotopic to an embedding @ : 320 — ¥, with a(F) = F
in ¥,,. By considering the surface-knot F in S* as the covering projection image, there
is an orientation-preserving diffeomorphism g of S* with g(F) = F which sends the
spin loop basis (pu(9D,), pu(0D.,)) of F to the spin loop basis (0D,,dD",) of F. The
lifting diffeomorphism f of g is an a-invariant orientation-preserving differomorphism
of 33, such that the composition embedding ' = fa : ¥2° — 3, with f(F) = F
which sends the spin loop basis (4(0D., u(0D?,) of F' to the spin loop basis (0D., 0D.,)
of F'. By a smooth isotopy, the embedding v’ is deformed to send the handlebody
V' to Videntically and then deformed by Lemma 2.6 to send the total bump B to B
identically.

On deformations of the 2-handle systems D, x I and E; x I on F in X, the
following two assertions are observed, where at the present stage note that the 2-
handle system images pu'(D, x I) and pu’ (ﬁ; x I) are in general singular 2-handles
on Fin S%.

(2.7.1) The smooth embedding v’ is smoothly isotopic to a smooth embedding u* :
¥00 — 3, such that

w (Dy x 1, Dy x I,D, x I, Dy x I) = (Dy x I,u"(Dy) x I, D} x I, D} x I).

(2.7.2) The smooth embedding «* in (2.7.1) is smoothly isotopic to a smooth em-
bedding u; : %% — 33, such that

w(Dy x I,Dy x I, D, x I,Dy x I) = (Dy x I, Dy x I, D, x I, Dy x I).

By continuing the same processes of (2.7.1) and (2.7.2) for i = 2,3,...,n, the
embedding v is smoothly isotopic to a smooth embedding

T
such that
un(Di x I,D; x I, D, x I,D, x I) = (D; x I,D; x I, D, x I, D, x I)

for all <. By Corollary 2.5, u,, is smoothly isotopic to the inclusion map inc after a
local replacement of a diffeomorphism in Diff"(D*, rel 8). This completes the proof
of Lemma 2.7 except for the proofs of (2.7.1) and (2.7.2). O
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Proof of (2.7.1). By regarding the bump By = D, x IUD, x I C %, as a line
bundle over a twisted disk d; associated with Dy U D] (see [7]), move neighborhoods
in «/(D}) of the interior intersection double points between the 2-handle core D; and

the 2-handle core image v’ (Dll) into the interior intersection double points of the 2-
handle core D, and the 2-handle core image u/(D)) through the twisted disk dj, so
that

IntD; N Intw/ (D)) = 0.

In a process of this deformation, every disk in the neighborhoods meets F' in two points
apart from the part of 2-handle attachments, but in the end of this deformation the
interior of the 2-handle core image u/(D}) no longer meets F (see the proof of |7,
Lemma 3.2]). This deformation does not touch the 2-handles Dy x I and D x I. Let
u” X090 — 3 be the resulting smooth embedding which is smoothly isotopic to u'.

Then we have the following four O2-handle pairs:
(Dy x I,D} x I), (Dy x I, Dy x I), (Dy x I,u"(D} x I)), (Dy x I,u"(D}) x I)

on F in ¥,. By the covering projection p : 3, — S*, we obtain the two O2-handle
pairs
(Dyx 1Dy x I), (D1 x 1,pu"(D}) 1)

on F in $4 with pu”(D,) x I a singular 2-handle. Apply [7, Lemma 2.3] to the O2-
handle pair (D x I, pu” (Ell) x I) to deform pu” (ﬁ;) x I into a smoothly embedded
2-handle, and then apply Lemma 2.6 to deform pu” (D)) x I into the 2-handle D} x 1.
These deformations are realized by a smooth isotopy of ¥,,, so that there is a smooth
embedding u* : 2% — 33, smoothly isotopic to u” such that

w (Dy x 1, Dy x I, D, x I,Dy x I) = (Dy x I,u*(Dy) x I, D} x I, D, x I),
where u*(Dy) x I is taken to be Dy x .

Proof of (2.7.2). In (2.7.1), we obtain two O2-handle pairs (D; x I, D] x I) and
(pu*(Dy) x I, D}, x I) on F in S* with pu*(D;) x I a singular 2-handle by taking the

covering projection image. Apply [7, Lemma 2.3] to the O2-handle pair (pu*(D;) X

I, D} x I) to deform pu*(D1) x I into a smoothly embedded 2-handle, and then apply
Lemma 2.6 to deform pu*(D;) x I into the 2-handle D; x I. These deformations are
realized by a smooth isotopy of ¥,,, so that there is a smooth embedding u; : %0 —

Y, smoothly isotopic to u* such that
u (Dy x I, Dy x I,D, x I, Dy xI)=(DyxI,Dy x I,D, x I,Dy x I). O
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Now the proof of Theorem 1.1 is done as follows.

Proof of Theorem 1.1. If necessary, by changing changing the orientation of 3,
assume that the smooth embedding e : ¥ — ¥, is orientation-preserving. Let 320
be an a-invariant smooth 4-submanifold of 3% by removing the interiors of a 4-ball
Dj. Let u : X% — %, be the smooth embedding defined by e. By Lemma 2.7,
the embedding u is smoothly isotopic to a smooth embedding @ : X%° — 3, such
that the composition v’ = fu : X290 — 3, for an a-invariant orientation-preserving
diffeomorphism f of ¥, is smoothly isotopic to the inclusion map

inc : Z%O — Xn

up to local replacements by diffeomorphisms in Diff* (D4, rel 9). Since the inclusion
map inc : X0 — ¥, extends to the identity map 1 of ¥, the isotopy extension
theorem says that the smooth embedding u’ extends to a diffeomorphism

(u')+ C X = 2.

Then the composite diffeomorphism f~'(v/)* : X, — ¥, is an extension of the
embedding @ : ¥%° — 33, By the isotopy extension theorem, the smooth embedding u
extends to a diffeomorphism u™ :: 3,, — %,,. Since the closed complement cl(3,,\ 2%°)
is the disjoint union of 4-balls D§ and «(Djg), we have the identities

(S, \ u(E0%) = utcl(S, \ B0%) = ut(Dg) Uuta(Dy).
Thus, the closed complement cl(3,, \ e(X0)) is a 4-ball. By 'y = 0 in [2], we see that

the embedding e extends to a diffeomorphism et : ¥, — 3,,. O,

The property that the diffeomorphisms f is a-equivariant in Lemma 2.7 is not
used in the proof of Theorem 1.1. This property is used in the proof of the following
corollary.

Corollary 2.8. Every orientation-preserving diffeomorphism A : 33, — ¥, is smoothly
isotopic to an a-equivariant diffeomorphism up to a local replacement by a diffeomor-
phism in Diff"(D*, rel 9).

In the piecewise-linear category, this local replacement is not needed.

Proof of Corollary 2.8. Apply the same argument as the proof of Theorem 1.1 for
h: 3, — 3, in place of u : £2% — 33, Then every orientation-preserving diffeomor-
phism A : 3, — 3, is smoothly isotopic to a diffeomorphism A : ¥, — >, such that
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the composition &' = fh : ¥, — X, for an a-equivariant orientation-preserving dif-
feomorphism f : ¥,, — 3, is smoothly isotopic to the identity 1 : 3, — >3, after local
replacements by diffeomorphisms in Difft(D*, reld) needed to apply Corollary 2.5.
Then the diffeomorphism h is smoothly isotopic to the a-equivariant orientation-
preserving diffeomorphism f~! since the composition h = f~'4’ is smoothly isotopic
to f~! and h, up to local replacements by diffeomorphisms in Diff" (D%, reld). O
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